Feynman 経路積分-時間分割近似法による経路空間上の解析として

熊ノ郷 直人(工学院大学)

Encounter with Mathematics 第52回, 2010年1月9日

[1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation.

Bull. Sci. Math. vol. 128 (2004) 197-251.

[2] D. Fujiwara and N. Kumano-go, Smooth functional derivatives in Feynman path integral by time slicing approximation.

Bull. Sci. Math. vol. 129 (2005) 57-79.

[3] N. Kumano-go and D. Fujiwara, Feynman path integrals and semiclassical approximation.

RIMS Kokyuroku Bessatsu B5 (2008) 241-263 (概説).

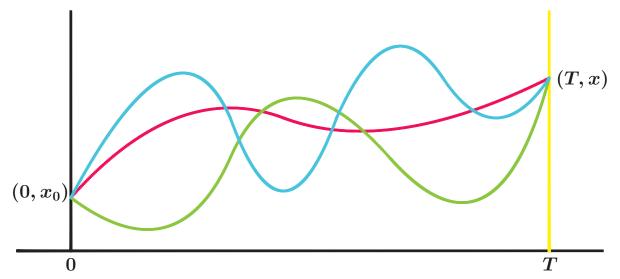
1. Introduction

1948年、Feynman は Schrödinger 方程式 $\left(i\hbar\partial_T+rac{\hbar^2}{2}\triangle-V(T,x)
ight)u(T,x)=0$ の基本解の積分核 $K(T,x,x_0)$ を

$$K(T,x,x_0) = \int e^{rac{i}{\hbar}S[\gamma]} {\cal D}[\gamma]$$

と表現した。ここで、 $\gamma:[0,T] o\mathrm{R}^d$ は $\gamma(0)=x_0,\ \gamma(T)=x$ となる経路、 $S[\gamma]=\int_0^Trac{1}{2}\Big|rac{d\gamma}{dt}\Big|^2-V(t,\gamma)dt$ は経路 γ の作用、 $\int\sim\mathcal{D}[\gamma]$ は すべての経路に関す

る新しい和(経路積分)である。R. P. Feynman, Rev. Mod. Phys. 20 (1948).



Feynman は経路積分を有限次元積分の極限として説明した。この方法は現在時間分割近似法 と呼ばれる。

さらに Feynman は一般の汎関数 $F[\gamma]$ を振幅とする経路積分を考え、汎関数積分

$$\int \! m{F}[m{\gamma}] e^{rac{i}{\hbar}S[m{\gamma}]} m{\mathcal{D}}[m{\gamma}]$$

と汎関数微分 $(DF)[\gamma][\eta]$ からなる経路空間上の新しい解析学を提案し、量子力学に別の定式化を与えた。

しかし 1960 年、Cameron は、経路積分の測度 $e^{\frac{i}{\hbar}S[\gamma]}\mathcal{D}[\gamma]$ が数学的に存在しないことを証明した。R. H. Cameron, J. of Math. and Phys. Sci. 39(1960).

Remark 測度 を用いて、我々は積分の多くの性質が証明できる。

- 2つの積分の順序交換
- 積分と limit の順序交換
- 積分の存在 など。

我々の結果

時間分割近似法ig| を用いて、なめらかな汎関数微分 $(oldsymbol{DF})[\gamma][oldsymbol{\eta}]$ をもつ

Feynman 経路積分の存在

$$\int e^{rac{i}{\hbar}S[\gamma]} {m F}[m \gamma] {m \mathcal D}[m \gamma]$$

を証明し、積分としての以下の性質を証明した。

- Riemann(-Stieltjes) 積分や解析的 limit との順序交換
- 微分積分学の基本定理
- ullet 平行移動 $\gamma+\eta$ や直交変換 $Q\gamma$ のもとでの不変性
- ullet 汎関数微分 $(DF)[\gamma][\eta]$ に関する部分積分やテイラー展開
- 準古典近似 $\hbar \rightarrow 0$
- 準古典近似 ħ → 0 の第2項(D. Fujiwara)

正確に言えば、我々は、時間分割近似法が始点と終点 (x,x_0) の空間 \mathbf{R}^{2d} 上で広義一様収束する汎関数 $m{F}[\gamma]$ のかなり一般的なクラス $m{\mathcal{F}}$ を与えた。

 $egin{align*} {f Remark} {f Schr\"odinger} {f 方程式の基本解の構成法として、R}^{2d} 上の(広義)一様収束を示した研究(我々はこれを <math>m F[\gamma]\equiv 1$ とみなす)。

- Fujiwara(1979,1991) Kitada-H. Kumano-go(1981) Yajima(1991)
- N. Kumano-go(1995) Fujiwara-Tsuchida(1997) W. Ichinose(1997)

経路積分の他の数学的な定式化として

- Nelson(1964) Cameron-Storvick(1983) Wiener 測度の解析接続
- Itô(1967) Albeverio-Hoegh Krohn(1976) Truman(1972) 無限次元振動積分 Albeverio, Hoegh-Krohn, Mazzucchi, Mathematical theory of Feynman path integrals, 2nd, Springer, 2008.
- Johnson-Lapidus Gill-Zachary(2002) Operational calculus

 Johnson and Lapidus, The Feynman integral and Feynman's operational calculus, Oxford, 2000.
- T. Ichinose-Tamura(1987) 2 次元 Dirac 方程式に対し <u>測度</u> を構成 瀬孝 『Path Integral 入門』「数理物理への誘い」(江沢洋編) 遊星社, 1994.

2. Feynman 経路積分の存在

Assumption of
$$S[\gamma] = \int_0^T rac{1}{2} \left| rac{d\gamma}{dt}
ight|^2 - V(t,\gamma) dt.$$

$$V(t,x):\mathrm{R} imes\mathrm{R}^d o\mathrm{R}$$
 は $\partial_x^lpha V(t,x)$ が連続で

$$|\partial_x^{lpha}V(t,x)| \leq C_{lpha}(1+|x|)^{\max(2-|lpha|,0)}$$
 .

Example of $F[\gamma] \in \mathcal{F}$ (粗く言えば)

$$|\partial_x^lpha B(t,x)| \leq C_lpha (1+|x|)^m$$
 のとき、

時刻
$$t$$
 での値 $F[\gamma] = B(t,\gamma(t)) \in \mathcal{F}, \quad F[\gamma] \equiv \mathbf{1} \in \mathcal{F},$

Riemann(-Stieltjes) 積分
$$F[\gamma] = \int_{T'}^{T''} B(t,\gamma(t)) dt \in \mathcal{F}$$
 .

$$|\partial_x^lpha B(t,x)| \leq C_lpha$$
 ගඋපි. $F[\gamma] = e^{\int_{T'}^{T''} B(t,\gamma(t)) dt} \in \mathcal{F}$.

$$(3) \ Z: \mathrm{R} imes \mathrm{R}^d o \mathrm{C}^d \ ilde{n} \ |\partial_x^{lpha} Z(t,x)| + |\partial_x^{lpha} \partial_t Z(t,x)| \leq C_{lpha} (1+|x|)^m, \ ^t(\partial_x Z) = (\partial_x Z) \$$
をみたすとき、線積分 $F[\gamma] = \int_{T'}^{T''} Z(t,\gamma(t)) \cdot d\gamma(t) \in \mathcal{F}$.

多くの $F[\gamma] \in \mathcal{F}$ を創ることができる。

クラス $\mathcal F$ をどのように定義するかは後の節で述べる。たとえ $\mathcal F$ の定義を述べなくても、次の定理から、多くの汎関数 $\mathbf F[\gamma]\in\mathcal F$ を創ることができるからである。

 $egin{aligned} ext{Theorem 1} & (ext{Smooth algebra}) & 任意の <math>F[\gamma], G[\gamma] \in \mathcal{F},$ 任意の折れ線経路 $\eta:[0,T]
ightarrow \mathrm{R}^d,$ 任意の d imes d 型実行列 P に対し、

- $(1) \,\, F[\gamma] + G[\gamma] \in \mathcal{F}, \,\,\,\,\, F[\gamma]G[\gamma] \in \mathcal{F}.$
- $(2) \,\, F[\gamma + \eta] \in \mathcal{F}, \,\,\,\, F[P\gamma] \in \mathcal{F}.$
- (3) $(DF)[\gamma][\eta] \in \mathcal{F}$.

 $egin{aligned} {f Remark} \ ($ 汎関数微分)折れ線経路 $\gamma:[0,T] o {
m R}^d$ と $\eta:[0,T] o {
m R}^d$ に対し、 $(DF)[\gamma][\eta]=rac{d}{d heta}F[\gamma+ heta\eta]igg|_{ heta=0}$.

時間分割近似法

 $\Delta_{T,0}:T=T_{J+1}>T_J>\cdots>T_1>T_0=0$ を区間 [0,T] の任意の分割とし、

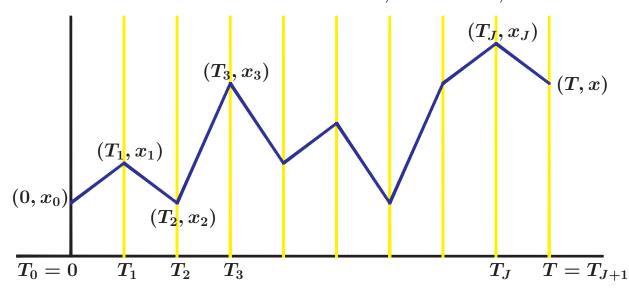
 $t_j = T_j - T_{j-1}, \ |\Delta_{T,0}| = \max_{1 \le j \le J+1} t_j$ とする。

 $x=x_{J+1}$ とおき、 $x_J,x_{J-1},\ldots,x_1\in\mathrm{R}^d$ とする。

 $\gamma_{\Delta_{T.0}}$ を $j=1,2,\ldots,J,J+1$ に対し、 (T_j,x_j) と (T_{j-1},x_{j-1}) を線分で結ぶ任意の

折れ線経路とする。汎関数 $S[\gamma_{\Delta_{T,0}}], F[\gamma_{\Delta T,0}]$ は $x_{J+1}, x_J, \cdots, x_1, x_0$ の関数となる。

 $S[\gamma_{\Delta_{T,0}}] = S_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0) \,, \,\, F[\gamma_{\Delta_{T,0}}] = F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0) \,.$



Feynman 経路積分は存在する

Theorem 2 (Feynman 経路積分の存在)

T は十分小さいとする。このとき、任意の $F[\gamma] \in \mathcal{F}$ に対し、

$$\int e^{rac{i}{\hbar}S[\gamma]} m{F}[\gamma] \mathcal{D}[\gamma] \equiv \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i \hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]} F[\gamma_{\Delta_{T,0}}] \prod_{j=1}^{J} dx_j ~(\star)$$

は始点と終点 $(x,x_0)\in\mathrm{R}^{2d}$ に関して広義一様収束する。i.e., well-defined.

 $m {f Remark} \ {f F}[\gamma] \equiv 1$ のときでさえ、右辺の各積分は絶対収束しない。(振動積分)

$$\int_{\mathrm{R}^d} \mathbf{1} dx_j = \mathbf{\infty}$$
 .

さらに積分(分割)の個数 J は ∞ になる。

$$\infty imes \infty imes \infty imes \infty imes \infty imes \cdots \cdots , \ \ J o \infty$$
 .

 $egin{array}{c} egin{array}{c} egin{arra$

Feynman は関数の形

$$\lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i \hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar} S_{\Delta_{T,0}}(x_{J+1},x_{J},...,x_{1},x_{0})} \prod_{j=1}^{J} dx_{j}$$

を用いて説明した。m Nelson は $S_{\Delta_{T,0}}$ を 近似 し、m Trotter 公式で絶対収束しない積分を一個づつ作用素として扱い、 $v\in L^2({f R}^d)$ のとき以下の L^2 -収束を証明した。

$$\lim_{J o\infty} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar T/(J+1)}
ight)^{d/2} \int_{\mathrm{R}^d} \cdots \int_{\mathrm{R}^d} e^{rac{i}{\hbar} \sum\limits_{j=1}^{J+1} \left(rac{(x_j-x_{j-1})^2}{2T/(J+1)}-V(x_{j-1})rac{T}{J+1}
ight)} v(x_0) \prod_{j=0}^{J} dx_j.$$

E. Nelson, J. Math. Phys. 5 (1964). しかし、近似 は、もとの汎関数

$$S[\gamma_{\Delta_{T,0}}] = \sum_{j=1}^{J+1} \left(rac{(x_j - x_{j-1})^2}{2t_j} - \int_{T_{j-1}}^{T_j} V(t, rac{t - T_{j-1}}{T_j - T_{j-1}} x_j + rac{T_j - t}{T_j - T_{j-1}} x_{j-1}) dt
ight)$$

とは異なる。

我々は (\star) の多重(振動)積分を直接扱い、汎関数 $S[\gamma_{\Delta_{T,0}}],F[\gamma_{\Delta_{T,0}}]$ を保持する。

3. 微分積分学の基本定理

い からである。(すべての経路とは何か?)

Theorem 3 T は十分小さいとする。 $m \geq 0\,,\;\;0 \leq T' \leq T'' \leq T,$ $f(t,x):\mathrm{R} imes\mathrm{R}^d o\mathrm{C}$ は $\partial_x^lpha f(t,x),\,\partial_x^lpha \partial_t f(t,x)$ が連続で $|\partial_x^lpha f(t,x)| + |\partial_x^lpha \partial_t f(t,x)| \leq C_lpha (1+|x|)^m$ とする。このとき $\int e^{rac{i}{\hbar}S[\gamma]} \Big(f\left(T'', \gamma(T'')
ight) - f\left(T', \gamma(T')
ight) \Big) \mathcal{D}[\gamma] .$ $=\int e^{rac{i}{\hbar}S[\gamma]} \Big(\int_{T'}^{T''} (\partial_x f)(t,\gamma(t)) \cdot d\gamma(t) + \int_{T'}^{T''} (\partial_t f)(t,\gamma(t)) dt \Big) \mathcal{D}[\gamma] \, .$ $oxed{ ext{Remark}} \int_{x_t}^{x_t} (\partial_x f)(t,\gamma(t)) \cdot d\gamma(t)$ は 経路空間上の経路に沿った 新しい 線積分で ある。普通の 線積分はすべての連続経路 γ やブラウン運動 $\mathrm{B}(t)$ に対して 定義できな

経路空間上の経路に沿った新しい線積分

粗く言えば、ブラウン運動 $\mathrm{B}(t)$ と折れ線経路 $\gamma_{\Delta_{T,0}}$ が $\mathrm{B}(T_j)=x_j$ で比較できたら

 $ext{It\^o}$ 積分 は $\gamma_{\Delta_{T,0}}$ の各線分の 始点 で近似される。

$$\int_{T'}^{T''} Z(t,\mathrm{B}(t)) \cdot d\mathrm{B}(t) pprox \sum_{j} Z(T_{j-1},x_{j-1}) \cdot (x_j-x_{j-1}) \,.$$

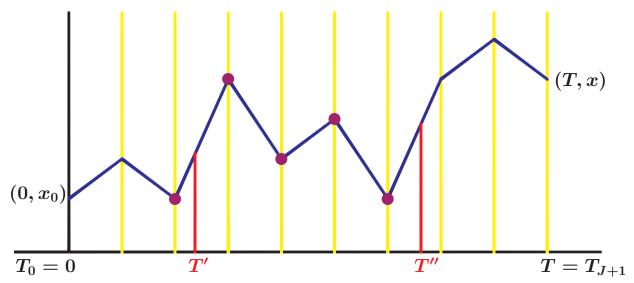
 $egin{array}{c|c} Stratonovich 積分 は <math>\gamma_{\Delta_{T,0}}$ の各線分の 中点 で近似される。

$$\int_{T'}^{T''} Z(t,\mathrm{B}(t)) \circ d\mathrm{B}(t) pprox \sum_j Z\left(rac{T_j+T_{j-1}}{2},rac{x_j+x_{j-1}}{2}
ight) \cdot \left(x_j-x_{j-1}
ight).$$

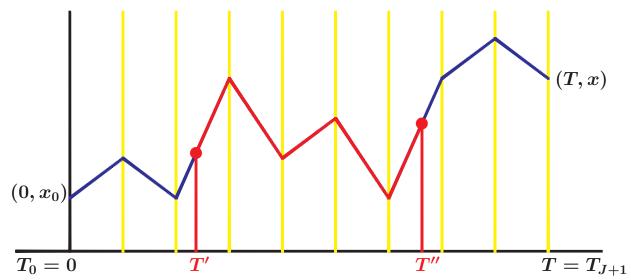
新しい線積分 は $\gamma_{\Delta_{T,0}}$ に沿った 古典的な線積分そのもの である。

$$\int_{T'}^{T''} Z(t,\gamma_{\Delta_{T,0}}(t)) \cdot d\gamma_{\Delta_{T,0}}(t) \, .$$

Itô 積分は Riemann 和の極限。



新しい積分は線積分の極限。



Proof of Theorem 3 Example と Theorem 1(1) より

$$F_1[\gamma] = f\left(T'',\gamma(T'')
ight) - f\left(T',\gamma(T')
ight) \in \mathcal{F}\,, \ F_2[\gamma] = \int_{T'}^{T''} (\partial_x f)(t,\gamma(t)) \cdot d\gamma(t) + \int_{T'}^{T''} (\partial_t f)(t,\gamma(t)) dt \in \mathcal{F}\,.$$

微分積分学の基本定理より、任意の折れ線経路 $\gamma_{\Delta_{T,0}}$ に対し

$$F_1[\gamma_{\Delta_{T,0}}] = F_2[\gamma_{\Delta_{T,0}}]$$
 .

Theorem 2 より

$$egin{aligned} \int e^{rac{i}{\hbar}S[\gamma]}F_1[\gamma]\mathcal{D}[\gamma] &\equiv \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} igg(rac{1}{2\pi i\hbar t_j}igg)^{d/2} \int_{\mathrm{R}^d J} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]}F_1[\gamma_{\Delta_{T,0}}] \prod_{j=1}^J dx_j \ &= \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} igg(rac{1}{2\pi i\hbar t_j}igg)^{d/2} \int_{\mathrm{R}^d J} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]}F_2[\gamma_{\Delta_{T,0}}] \prod_{j=1}^J dx_j \ &\equiv \int e^{rac{i}{\hbar}S[\gamma]}F_2[\gamma]\mathcal{D}[\gamma] \,. \; \Box \end{aligned}$$

4. Riemann(-Stieltjes) 積分や lim との順序交換

Theorem 4 T は十分小さいとする。 $m \geq 0, 0 \leq T' \leq T'' \leq T,$

$$B(t,x):[0,T] imes\mathrm{R}^d o\mathrm{C}$$
 は $\partial_x^lpha B(t,x)$ が連続で

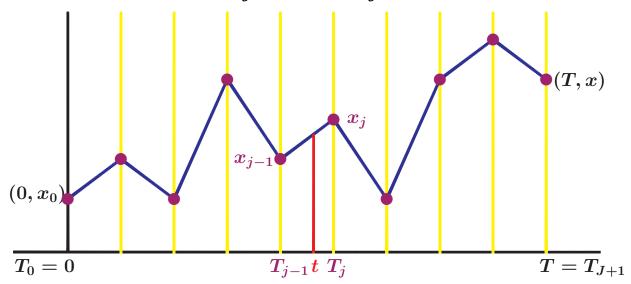
$$|\partial_x^{lpha} B(t,x)| \leq C_{lpha} (1+|x|)^m$$
 とする。このとき

$$\int_{T'}^{T''} \left(\int e^{rac{i}{\hbar}S[\gamma]} B(t,\gamma(t)) \mathcal{D}[\gamma]
ight) dt = \int e^{rac{i}{\hbar}S[\gamma]} \left(\int_{T'}^{T''} B(t,\gamma(t)) dt
ight) \mathcal{D}[\gamma] \, .$$

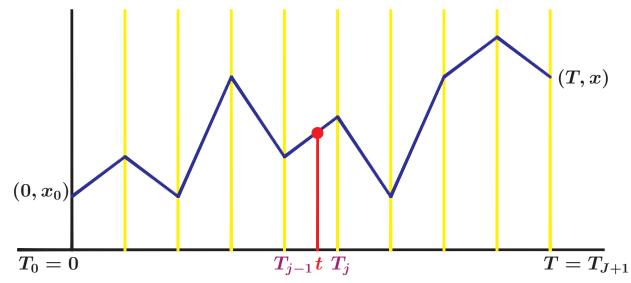
 $oxed{ ext{Remark}}$ 解析的 \liminf との順序交換も証明できる。ゆえに $|\partial_x^lpha B(t,x)| \leq C_lpha$ ならば

$$egin{aligned} &\int e^{rac{i}{\hbar}S[\gamma]+rac{i}{\hbar}\int_0^T B(au,\gamma(au))d au}\mathcal{D}[\gamma] \ &= \sum_{n=1}^\infty \left(rac{i}{\hbar}
ight)^n \int_0^T d au_n \int_0^{ au_n} d au_{n-1} \cdots \int_0^{ au_2} d au_1 \ & imes \int e^{rac{i}{\hbar}S[\gamma]} B(au_n,\gamma(au_n)) B(au_{n-1},\gamma(au_{n-1})) \cdots B(au_1,\gamma(au_1)) \mathcal{D}[\gamma] \end{aligned}$$
 (摂動展開).

Nelson は端点 x_j または x_{j-1} で近似した。



我々は粒子の位置 $\gamma_{\Delta_{T,0}}(t)=rac{t-T_{j-1}}{T_j-T_{j-1}}x_j+rac{T_j-t}{T_j-T_{j-1}}x_{j-1}$ を保持する。



 $oxed{ ext{Proof of Theorem 4}} \ \gamma_{\Delta_{T,0}}(t) \$ を近似しないので、 $B(t,\gamma_{\Delta_{T,0}}(t)) \$ は $t\in [T',T'']$

に関して連続となる。(x_j の微分も)

部分積分のあと (振動積分)の Lebesgue の収束定理により、任意の分割 $\Delta_{T,0}$ に対し

は $t \in [T', T'']$ に関して連続である。Theorem~2 より

$$egin{aligned} &\int e^{rac{i}{\hbar}S[\gamma]}B(t,\gamma(t))\mathcal{D}[\gamma] \ &\equiv \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]}B(t,\gamma_{\Delta_{T,0}}(t)) \prod_{j=1}^{J} dx_j \end{aligned}$$

は $t \in [T', T'']$ に関して一様収束する。ゆえに、極限関数

$$\int e^{rac{i}{\hbar}S[\gamma]}B(t,\gamma(t)){\cal D}[\gamma]$$

もまた $t \in [T', T'']$ に関して連続となる。つまり $ext{Riemann}$ 可積分となる。

$$egin{aligned} &\int_{T'}^{T''} \left(\int e^{rac{i}{\hbar}S[\gamma]}B(t,\gamma(t))\mathcal{D}[\gamma]
ight)dt \ &\equiv \int_{T'}^{T''} \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]}B(t,\gamma_{\Delta_{T,0}}(t)) \prod_{j=1}^{J} dx_j dt \,. \end{aligned}$$

さらに一様収束より $\int_{T'}^{T''}\cdots dt$ と $\lim_{|\Delta_{T,0}| o 0}$ の順序交換もできる。

$$=\lim_{|\Delta_{T,0}| o 0}\int_{T'}^{T''}\prod_{j=1}^{J+1}\left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2}\int_{\mathrm{R}^{dJ}}e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]}B(t,\gamma_{\Delta_{T,0}}(t))\prod_{j=1}^{J}dx_jdt\,.$$

部分積分のあと(振動積分)の Fubini の定理より、

$$egin{aligned} &= \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i \hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]} \int_{T'}^{T''} B(t,\gamma_{\Delta_{T,0}}(t)) dt \prod_{j=1}^{J} dx_j \ &\equiv \int e^{rac{i}{\hbar}S[\gamma]} \left(\int_{T'}^{T''} B(t,\gamma(t)) dt
ight) \mathcal{D}[\gamma] \,. \,\, \Box \end{aligned}$$

. 平行移動 $F[\gamma+\eta]$ や直交変換 $F[Q\gamma]$

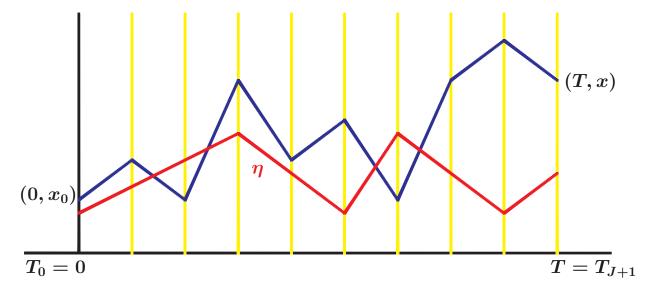
$$\int_{\gamma(0)=x_0,\gamma(T)=x}e^{rac{i}{\hbar}S[\gamma+\eta]}F[\gamma+\eta]\mathcal{D}[\gamma]=\int_{\gamma(0)=x_0+\eta(0),\gamma(T)=x+\eta(T)}e^{rac{i}{\hbar}S[\gamma]}F[\gamma]\mathcal{D}[\gamma]\,.$$

$$\int_{\gamma(0)=x_0,\gamma(T)=x}e^{rac{i}{\hbar}S[Q\gamma]}F[Q\gamma]\mathcal{D}[\gamma]=\int_{\gamma(0)=Qx_0,\gamma(T)=Qx}e^{rac{i}{\hbar}S[\gamma]}F[\gamma]\mathcal{D}[\gamma]$$
 .

$$egin{aligned} &\int_{\gamma(0)=x_0,\gamma(T)=x} e^{rac{i}{\hbar}S[\gamma+\eta]}F[\gamma+\eta]\mathcal{D}[\gamma] \ &= \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}+\eta]}F[\gamma_{\Delta_{T,0}}+\eta] \prod_{j=1}^{J} dx_j \,. \end{aligned}$$

分割 $\Delta_{T,0}$ が折れ線経路 η が折れる時刻をすべて含むように選び、

$$\eta(T_j)=y_j,\,j=0,1,\ldots,J,J+1$$
 とおく。



 $\gamma_{\Delta_{T,0}}+\eta$ は $j=1,2,\ldots,J+1$ に対し (T_j,x_j+y_j) と $(T_{j-1},x_{j-1}+y_{j-1})$ を

線分で結ぶ折れ線経路となるので

$$=\lim_{|\Delta_{T,0}| o 0}\prod_{j=1}^{J+1}\left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2}\int_{\mathrm{R}^{dJ}}e^{rac{i}{\hbar}S_{\Delta_{T,0}}(x_{J+1}+y_{J+1},x_{J}+y_{J},...,x_{1}+y_{1},x_{0}+y_{0})}$$

$$imes F_{\Delta_{T,0}}(x_{J+1}+y_{J+1},x_J+y_J,\ldots,x_1+y_1,x_0+y_0) \prod_{j=1}^r dx_j \, .$$

変数変換: $x_j+y_j o x_j,\,j=1,2,\ldots,J$ より

$$=\lim_{|\Delta_{T,0}| o 0}\prod_{i=1}^{J+1}\left(rac{1}{2\pi i\hbar t_{j}}
ight)^{d/2}\int_{\mathrm{R}^{dJ}}e^{rac{i}{\hbar}S_{\Delta_{T,0}}(x_{J+1}+y_{J+1},x_{J},...,x_{1},x_{0}+y_{0})}$$

$$imes F_{\Delta_{T,0}}(x_{J+1}+y_{J+1},x_{J},\ldots,x_{1},x_{0}+y_{0})\prod_{j=1}^{J}dx_{j}\,.$$

 $y_{J+1} = \eta(T)$ と $y_0 = \eta(0)$ に注意すれば

$$=\int_{\gamma(0)=x_0+\eta(0),\gamma(T)=x+\eta(T)}e^{rac{i}{\hbar}S[\gamma]}F[\gamma]\mathcal{D}[\gamma]$$
 . $\ \Box$

6. 汎関数微分 $(DF)[\gamma][\eta]$

Theorem 6 (汎関数微分に関する部分積分)

T は十分小さいとする。このとき、任意の $F[\gamma]\in\mathcal{F}$ と $\eta(0)=\eta(T)=0$ となる任意の折れ線経路 $\eta:[0,T] o\mathrm{R}^d$ に対し

$$\int e^{rac{i}{\hbar}S[\gamma]}(DF)[\gamma][\eta]\mathcal{D}[\gamma] = -rac{i}{\hbar}\int e^{rac{i}{\hbar}S[\gamma]}(DS)[\gamma][\eta]F[\gamma]\mathcal{D}[\gamma]\,.$$

Remark $F[\gamma] \equiv 1$ のとき

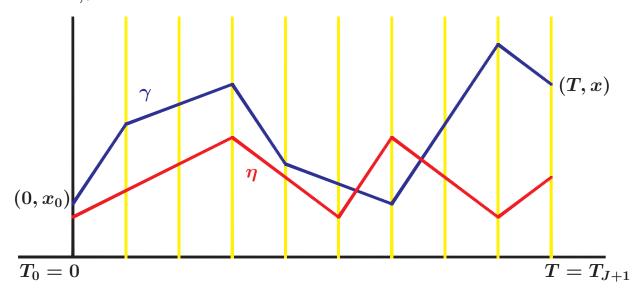
$$S[\gamma] = \int_0^T rac{1}{2} \Big|rac{d\gamma}{dt}\Big|^2 - V(t,\gamma) dt$$

に注意する。 $\eta(0)=\eta(T)=0$ となる任意の折れ線経路 $\eta:[0,T] o\mathrm{R}^d$ に対し

$$0 = \int e^{rac{i}{\hbar}S[\gamma]}\!\int_0^T \left(rac{d\gamma}{dt}rac{d\eta}{dt} - (\partial_x V)(t,\gamma(t))\eta(t)
ight)dt \mathcal{D}[\gamma]\,.$$

Remark (汎関数微分)分割 $\Delta_{T,0}$ が折れ線経路 γ や折れ線経路 η が折れる時刻をすべて含むように選び、 $\gamma(T_j)=x_j,\,\eta(T_j)=y_j,\,j=0,1,\ldots,J,J+1$ とおく。このとき、任意の $\theta\in \mathbf{R}$ に対し、 $\gamma+\theta\eta$ は $j=1,2,\ldots,J,J+1$ に対し $(T_j,x_j+\theta y_j)$ と $(T_{j-1},x_{j-1}+\theta y_{j-1})$ を線分で結ぶ折れ線経路となるので、

$$F[\gamma + heta \eta] = F_{\Delta_{T,0}}(x_{J+1} + heta y_{J+1}, x_J + heta y_J, \ldots, x_1 + heta y_1, x_0 + heta y_0)$$
 .



よって、汎関数微分 $(DF)[\gamma][\eta]$ は有限和で書ける。

$$(DF)[\gamma][\eta] = rac{d}{d heta} F[\gamma + heta \eta]igg|_{ heta = 0} = \sum_{j=0}^{J+1} (\partial_{x_j} F_{\Delta_{T,0}})(x_{J+1}, x_J, \ldots, x_1, x_0) \cdot y_j \,.$$

微分の方向を折れ線経路に 限定 しているので易しい。

Remark (汎関数微分に関するテイラー展開)

T は十分小さいとする。このとき、任意の $F[\gamma] \in \mathcal{F}$ と任意の折れ線経路 $\eta:[0,T] o \mathrm{R}^d$ に対し、

$$\int e^{rac{i}{\hbar}S[\gamma]}F[\gamma+\eta]\mathcal{D}[\gamma] = \sum_{l=0}^Lrac{1}{l!}\int e^{rac{i}{\hbar}S[\gamma]}(D^lF)[\gamma][\eta]\cdots[\eta]\mathcal{D}[\gamma] \ + \int_0^1rac{(1- heta)^L}{L!}\int e^{rac{i}{\hbar}S[\gamma]}(D^{L+1}F)[\gamma+ heta\eta][\eta]\cdots[\eta]\mathcal{D}[\gamma]d heta \,.$$

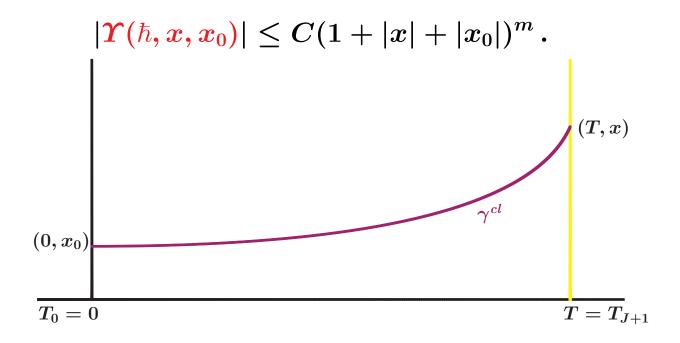
7. 準古典近似 $\hbar \rightarrow 0$

T は十分小さいとする。このとき、任意の $F[\gamma] \in \mathcal{F}$ に対し

$$\int e^{rac{i}{\hbar}S[\gamma]}F[\gamma]\mathcal{D}[\gamma] = \left(rac{1}{2\pi i\hbar T}
ight)^{d/2}\!\!e^{rac{i}{\hbar}S[\gamma^{cl}]}\left(D(T,x,x_0)^{-1/2}F[\gamma^{cl}] + \hbar m{\Upsilon}(\hbar,x,x_0)
ight)$$

と書ける。ここで γ^{cl} は $\gamma^{cl}(0)=x_0,\,\gamma^{cl}(T)=x$ となる一本の古典経路、

 $D(T,x,x_0)$ は Morette-Van Vleck 行列式で、



8. Theorems 1(1),2,7 の証明

 $T_0 = 0$

 T_1

 T_2

1992 年、Fujiwara は Schrödinger 方程式の基本解 ($F[\gamma] \equiv 1$) の積分核の 準古典近似を、近似としてシャープな 区分的古典経路 を用いて、以下のように証明した:

まず 区分的古典経路 による時間分割近似法を 相関数 , 主部 , 余り に分ける。

$$egin{aligned} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_{j}}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S_{\Delta_{T,0}}(x_{J+1},x_{J},...,x_{1},x_{0})} \prod_{j=1}^{J} dx_{j} \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{\Delta_{T,0}}^{\dagger}(x,x_{0})} \left(D_{\Delta_{T,0}}(x,x_{0})^{-1/2} + \hbar \Upsilon_{\Delta_{T,0}}(\hbar,x,x_{0})
ight). \ &= \left(rac{(T_{J},x_{J})}{(T_{J},x_{J})}
ight)^{(T_{J},x_{J})} \ &= \left(rac{(T_{J},x_{J$$

 T_J

 $T = T_{J+1}$

 $oxed{ Remark} egin{array}{c} ext{ 相関数} は 古典 egin{array}{c} ext{ 経路} \end{array} \gamma^{cl} ext{ で定義される作用 } S[\gamma^{cl}] ext{ となる。} \end{array}$

Remark 主部 は 相関数 の Hessian で定義される。

さらに、2つの分割

$$\Delta_{T,0} \hspace{1cm} : T = T_{J+1} > T_J > \cdots \hspace{1cm} \cdots > T_1 > T_0 = 0 \,,$$

 $(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0}):T=T_{J+1}>\cdots>T_{N+1}$ > $T_{n-1}>\cdots>T_0=0$ を比較すると、

|主部|
$$|D_{\Delta_{T,0}}-D_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}| \leq C(T_{N+1}-T_{n-1})^2$$
 ,

|
$$\Upsilon_{\Delta_{T,0}} - \Upsilon_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})} | \leq C rac{1}{\hbar} (T_{N+1} - T_{n-1})^2 \,, \quad |\Upsilon_{\Delta_{T,0}}| \leq C \,.$$

この評価を用いて、 $|\Delta_{T,0}|
ightarrow 0$ のときの収束

主部
$$|D_{\Delta_{T,0}}-D|\leq C|\Delta_{T,0}|T\,,$$

$$|\Upsilon_{\Delta_{T,0}}-\Upsilon|\leq Crac{1}{\hbar}|\Delta_{T,0}|T$$
 (♣) $,$ $|\Upsilon|\leq C$.

と準古典近似 $\hbar \rightarrow 0$ を証明した。 \overline{B} 原大輔「ファインマン経路積分の数学的方法」シュプリンガー, 1999.

私の疑問 $\hbar o 0$ のとき、 (\clubsuit) の右辺 $o \infty$ となる。なぜ、 $rac{1}{\hbar}$ を削除して

余り
$$\left|\Upsilon_{\Delta_{T,0}}-\Upsilon
ight|\leq C|\Delta_{T,0}|T$$
 ?

と書かなかったのか?

理由(余り)を

と定義したので、不可能である。

私の最初の問題 区分的古典経路 よりも近似として粗い 折れ線経路 を用いて \hbar 倍

シャープな評価を得ることができるか?($m{F}[\gamma] \equiv 1$ のとき)

$$\left|\Upsilon_{\Delta_{T,0}}-\Upsilon
ight|\leq C|\Delta_{T,0}|T(1+|x|+|x_0|)$$
 ?

Remark プランク定数 $\hbar = 1.054 imes 10^{-34} \; (\mathrm{J \cdot s})$.

定義を変える ($\Upsilon_{\Delta_{T,0}}$ を $\Upsilon_{\epsilon},\, 0 \leq \epsilon \leq 1$ で定義する)

 $(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})$ と $\Delta_{T,0}$ を $0\leq\epsilon\leq1$ で結ぶ。

をみたす $| \mathbf{\hat{r}} | \mathbf{\hat{r}} | \mathbf{\hat{r}}_{\epsilon}$ を定義できれば、 \hbar に依存しない評価を得ることができる。

しかし、どうやって Υ_{ϵ} を定義するのか?

|余り| Υ_{ϵ} は|主部| $D_{\epsilon}^{-1/2}$ で定義される \cdots

 $oxed{ imes}$ $oxed{D}_{\epsilon}^{-1/2}$ は 相関数 S_{ϵ} で定義される \cdots

相関数 S_ϵ は 各路 で定義される $\cdots \cdots$

すべては経路で定義される

最初から順番に、すべての収束を証明すれば良い。

$$egin{array}{c} {egin{array}{c} {\mathbb{Z}} {\mathbb{Z}}$$

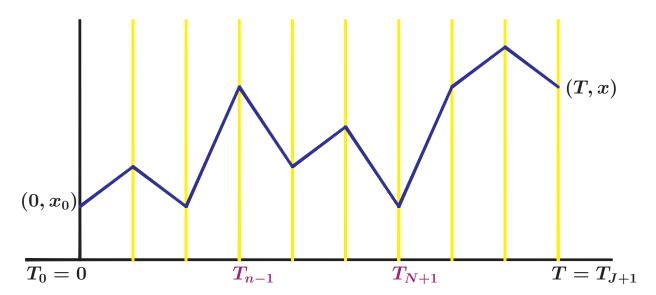
最初は 折れ線経路 $\gamma_{\Delta_{T,0}}$ だけを考えれば良いので、

仮定 $F[\gamma] \equiv 1$ は必要ない ($F[\gamma]$ の仮定はない)。

収束の証明なので Cauchy 列を作る。 2 つの分割

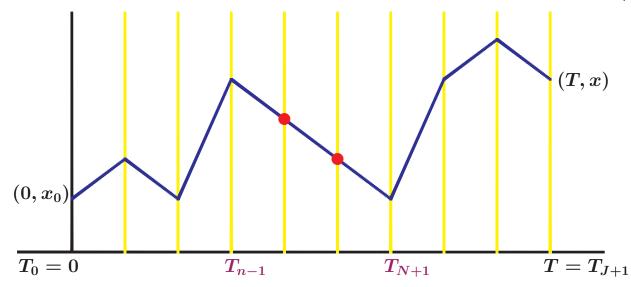
$$\Delta_{T,0} \qquad : T = T_{J+1} > T_J > \cdots \qquad \cdots > T_1 > T_0 = 0 \,, \ (\Delta_{T,T_{N+1}}, \Delta_{T_{n-1},0}) \, : T = T_{J+1} > \cdots > T_{N+1} \; extbf{>} \; T_{n-1} > \cdots > T_0 = 0 \,.$$

を比較する。



$$egin{array}{c} ext{Key Lemma} & x_j^{\circ} = rac{T_j - T_{n-1}}{T_{N+1} - T_{n-1}} x_{N+1} + rac{T_{N+1} - T_j}{T_{N+1} - T_{n-1}} x_{n-1}, \, j = n, \ldots, N \,\,$$
とする。

$$(x_N,\ldots,x_n)=(x_N^\circ,\ldots,x_n^\circ)$$
 のとき、 $\overline{ { ext{ ft} れ線経路}}\ \gamma_{\Delta_{T,0}}=\gamma_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}.$



2つの多重積分を2つの経路で比較する

$$\int \cdots \int \cdots \int \cdots \int \prod_{j=1}^J dx_j$$
 .

$$egin{aligned} F_{\Delta_{T,0}}(x_{J+1},\ldots,x_{N+1},x_N^\circ,\ldots,x_n^\circ,x_{n-1},\ldots,x_0) \ &= F[\gamma_{\Delta_{T,0}}] = F[\gamma_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}] \ &= F_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}(x_{J+1},\ldots,x_{N+1},x_{n-1},\ldots,x_0) \ . \end{aligned}$$

$$\int \cdots \int \qquad \int \cdots \int \qquad \prod_{j=N+1}^{J+1} dx_j \prod_{j=1}^{n-1} dx_j \, .$$

Proof of Theorems 1(1),2,7 $\infty \times \infty \times \infty \times \infty \times \cdots$, $J \to \infty$.

- (1) $F[\gamma] \in \mathcal{F} \Longrightarrow$ 時間分割近似法 (\star) が収束する。
- (★)が収束するように、仮定をどんどん加える。

(我々に $F[\gamma]$ の仮定はない。少なくとも $F[\gamma]\equiv 1$ の例は残るだろう。)

$$(2)\int_{T'}^{T''}B(t,\gamma(t))dt\in \mathcal{F},\, B(t,\gamma(t))\in \mathcal{F}.$$

(★)の収束だけを考え、他のことは考えない。

(そうすれば \mathcal{F} は集合として器が大きくなる。運が良ければ、他の例も含む。)

 $(3) \ F[\gamma], \ G[\gamma] \in \mathcal{F} \Longrightarrow F[\gamma] + G[\gamma], \ F[\gamma]G[\gamma] \in \mathcal{F}.$

加える 仮定 は + と × で閉じたものにする。

(1)(3) をみたす 仮定 を発見した。(2) は偶然成立。(証明終了) \square

9. 汎関数 $F[\gamma]$ のクラス \mathcal{F} の仮定

折れ線経路 は 区分的古典経路 よりも近似として粗い。

さらに時間分割近似法が収束するように仮定をどんどん加えた。

このため、装飾なしの Assumption' は多くの 危点 (critical point) をもつ。

簡単のため、 $1 \leq l \leq L \leq J+1$ に対し、

$$x_{L,l}=(x_L,x_{L-1},\ldots,x_l)$$

と書く。危点 $x_{L,l}^\dagger=x_{L,l}^\dagger(x_{L+1},x_{l-1})$ を

$$(\partial_{x_{L,l}} S_{\Delta_{T,0}})(x_{J+1,L+1}, oldsymbol{x_{L,l}^\dagger}, x_{l-1,0}) = 0$$

で定義する。

 $egin{align} egin{align} egin{align}$

 $oxed{Assumption'}$ (装飾なしの仮定) $m\geq 0$ とする。任意の非負整数 M に対し、正の

定数 A_M, X_M が存在し、任意の分割 $\Delta_{T,0}$, 任意の整数列

$$0 = j_0 < j_1 - 1 < j_1 < j_2 - 1 < j_2 < \dots < j_K \le J + 1$$

 $j_{K+1}-1=J+1$ と任意の多重指数 $|lpha_{j_{k+1}}|,\,|lpha_{j_k}|\leq M$ に対し、以下が成立する。

$$egin{aligned} (1) & | (\prod_{k=0}^K \partial_{x_{j_{k+1}-1}}^{lpha_{j_{k+1}-1}} \partial_{x_{j_k}}^{lpha_{j_k}}) F_{\Delta_{T,0}}(x_{J+1}, x_{J,j_K+1}^\dagger, x_{j_K}, \cdots, x_{j_{s+1}-1}, x_{j_{s+1}-2,j_s+1}^\dagger, x_{j_s}, \ & x_{j_{s-1}}, x_{j_{s-2},j_{s-1}+1}^\dagger, x_{j_{s-1}}, x_{j_{s-1}-1}, x_{j_{s-1}-2,j_{s-2}+1}^\dagger, x_{j_{s-2}}, \cdots, x_{j_{1}-1}, x_{j_{1}-2,1}^\dagger, x_0) | \ & \leq A_M(X_M)^{K+1} (1 + |x_{J+1}| + |x_{j_K}| + \cdots + |x_{j_{s+1}-1}| + |x_{j_s}| \ & + |x_{j_{s-1}}| + |x_{j_{s-1}}| + |x_{j_{s-1}-1}| + |x_{j_{s-1}-1}$$

(2),(3),(4) は省略。(あと3ページ必要)

 $egin{array}{c} \mathbf{Remark} \end{array}$ この仮定で、 $\mathbf{Theorem} \ 1(1), 2, 3, 4, 7 \$ が成立。

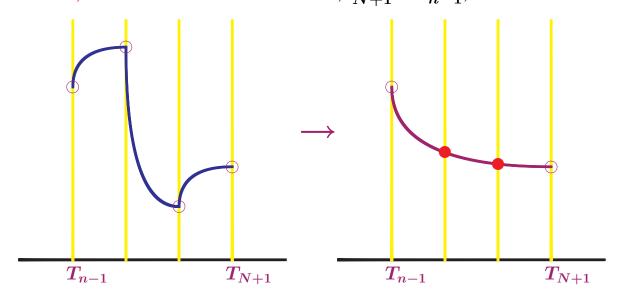
すべての危点 を古典経路の中に隠す

| 折れ線経路|| の代わりに ||区分的古典経路|| を使えば、仮定は <mark>危点</mark> を必要としない。

Proof 区分的古典経路 に 危点 を代入すると、区分的古典経路 は 一本の古典経路

となる。ゆえに、すべての危点を一本一本の古典経路の中に隠すことができる。

$$F_{\Delta_{T,0}}(\cdots,x_{N+1},x_{N,n}^\dagger,x_{n-1},\cdots) = F_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}(\cdots,x_{N+1},x_{n-1},\cdots)\,.$$



 $oxed{ Assumption }$ (区分的古典経路の場合の仮定) $m\geq 0, u_j\geq 0,$

 $\sum_{j=1}^{J+1}u_j\leq U<\infty$ とする。任意の非負整数 M に対して、正の定数 A_M,X_M が存在して、任意の分割 $\Delta_{T,0}$,任意の多重指数 $|lpha_j|\leq M,\,j=0,1,\ldots,J+1$ と任意の $1\leq k\leq J$ に対して、

$$|(\prod_{j=0}^{J+1}\partial_{x_j}^{lpha_j})F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)| \leq A_M(X_M)^{J+1}(1+\sum_{j=0}^{J+1}|x_j|)^m\,,$$

$$(2) \quad |(\prod_{j=0}^{r-1} \partial_{x_j}^{lpha_j}) \partial_{x_k} F_{\Delta_{T,0}}(x_{J+1}, x_J, \dots, x_1, x_0)|$$

$$\leq A_M(X_M)^{J+1}(u_{k+1}+u_k)(1+\sum_{j=0}^{J+1}|x_j|)^m$$
 .

 $oxed{ Remark}$ 言い換えなので、 $oxed{ Theorem } 1(1),2,3,4,7$ は成立。

仮定も経路で定義する

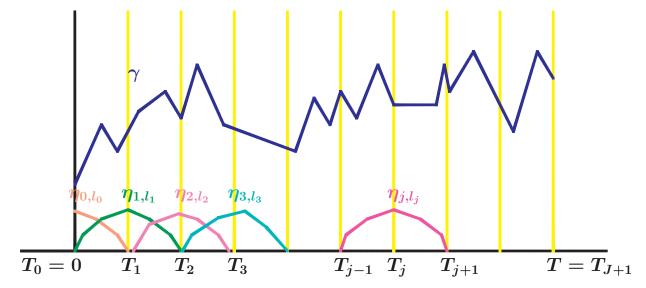
 ${f Definition}$ (汎関数微分) 任意の分割 ${f \Delta}_{T,0}$ に対し、

 $F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)\in C^\infty(\mathrm{R}^{d(J+2)})$ を仮定する。任意の折れ線経路

 $\gamma:[0,T] o\mathrm{R}^d$ と $\eta_l:[0,T] o\mathrm{R}^d,\,l=1,2,\ldots,L$ に対し、高階の汎関数微分を

$$(D^L F)[\gamma] \prod_{l=1}^L [\eta_l] = (\prod_{l=1}^L rac{\partial}{\partial heta_l}) F[\gamma + \sum_{l=1}^L heta_l \eta_l] \Big|_{ heta_1 = \cdots = heta_L = 0}$$

で定義する。以下は次の仮定における経路の図である。



 ${f Assumption of } {f F}[\gamma] \in {\cal F} \quad m \geq 0, \,
ho(t) \,$ は有界変動関数 $, \, |
ho|(t) \,$ は全変動とする。

任意の非負整数 M に対し、正の定数 A_M, X_M が存在し、

$$(1) \quad |(D^{\sum_{j=0}^{J+1}L_{j}}F)[\gamma]\prod_{j=0}^{J+1}\prod_{l_{j}=1}^{L_{j}}[\eta_{j,l_{j}}]| \leq A_{M}(X_{M})^{J+1}\left(1+||\gamma||
ight)^{m}\prod_{j=0}^{J+1}\prod_{l_{j}=1}^{L_{j}}||\eta_{j,l_{j}}||\,,$$

$$(2) \quad |(D^{1+\sum_{j=0}^{J+1}L_{j}}F)[\gamma][\eta]\prod_{j=0}^{J+1}\prod_{l_{j}=1}^{L_{j}}[\eta_{j,l_{j}}]|$$

$$0 \leq A_M(X_M)^{J+1} \left(1 + ||\gamma||
ight)^m \int_0^T |\eta(t)| d|
ho|(t) \prod_{j=0}^{J+1} \prod_{l_j=1}^{L_j} ||\eta_{j,l_j}||^2 d|\eta_{j,l_j}|^2 d$$

が、任意の分割 $\Delta_{T,0}$,任意の折れ線経路 $\gamma:[0,T] o \mathrm{R}^d$, $\eta:[0,T] o \mathrm{R}^d$ 、任意の $L_j=0,1,\ldots,M$, $[T_{j-1},T_{j+1}]$ に台をもつ任意の折れ線経路 $\eta_{j,l_j}:[0,T] o \mathrm{R}^d$, $l_j=1,2,\ldots,L_j$ で成立する。 $||\gamma||=\max_{0\leq t\leq T}|\gamma(t)|$ とする。

Remark Theorem 1,2,3,4,5,6,7 すべて成立する。

ここで一息(5分?)

10. Theorem 1(1),2,7 の証明におけるテクニック

計算は複雑で設定により変わるので、文だけでも読んでいただけると嬉しいです。

$$egin{aligned} (\star) & \lim_{|\Delta_{T,0}| o 0} \prod_{j=1}^{J+1} \left(rac{1}{2\pi i \hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar} S[\gamma_{\Delta_{T,0}}]} F[\gamma_{\Delta_{T,0}}] \prod_{j=1}^{J} dx_j \,, \ \infty imes \infty$$

の収束を証明するには、被積分関数 $F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)=F[\gamma_{\Delta_{T,0}}]$ に仮定を加えていけば良い。

Step 1. H. Kumano-go-Taniguchi の定理:

 (\star) を $J \to \infty$ のとき $C \times C \times C \times \cdots$ でコントロール。

Step 2. Fujiwara の停留位相法:

 (\star) を $J \to \infty$ によらず C でコントロール。

Step 3. 私の方法:

 (\star) を $|\Delta_{T,0}| \rightarrow 0$ のとき収束させる。

11. H. Kumano-go-Taniguchi の定理

原型は H. Kumano-go, Pseudo differential operators, MIT Press, p.360 の Fourier 積分作用素の多重積の評価

$$egin{aligned} &\prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S_{\Delta_{T,0}}(x_{J+1},x_{J},...,x_{1},x_{0})} F_{\Delta_{T,0}}(x_{J+1},x_{J},\ldots,x_{1},x_{0}) \prod_{j=1}^{J} dx_{j} \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{\Delta_{T,0}}^{\dagger}(x,x_{0})} q_{\Delta_{T,0}}(\hbar,x,x_{0}) \,. \end{aligned}$$

 $oxed{ {f Lemma~KT} } m \geq 0$ とする。任意の非負整数 M に対し、正の定数 A_M, X_M が存

在し、任意の多重指数 $|\alpha_i| \leq M, j=1,2,\ldots,J,J+1$ に対して

$$|(\prod_{j=0}^{J+1}\partial_{x_j}^{lpha_j})F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)| \leq A_M(X_M)^{J+1}(1+\sum_{j=0}^{J+1}|x_j|)^m\,.$$

を仮定する。 $J \to \infty$ のとき、多重振動積分は C^J でコントロールできる。

$$|q_{\Delta_{T,0}}(\hbar,x_{J+1},x_0)| \leq C^J (1+|x_{J+1}|+|x_0|)^m$$
.

Remark $|\partial_x^{lpha} B(t,x)| \leq C_{lpha}$ のとき、 $F[\gamma] = e^{\int_0^T B(t,\gamma(t))dt}$ は仮定をみたす。 $F_{\Delta_{T,0}} = e^{\sum_{j=1}^{J+1} \int_{T_{j-1}}^{T_j} B(t,\gamma_{T_j,T_{j-1}}(t,x_j,x_{j-1}))dt} = \prod_{j=1}^{J+1} e^{\int_{T_{j-1}}^{T_j} B(t,\gamma_{T_j,T_{j-1}}(t,x_j,x_{j-1}))dt}.$

簡単のため $oldsymbol{m}=oldsymbol{0}$ で証明する。ある関数 $\omega_j(x_j,x_{j-1})$ を用いて

$$S_{\Delta_{T,0}}(x_{J+1},x_{J},\ldots,x_{1},x_{0}) = \sum_{j=1}^{J+1} rac{(x_{j}-x_{j-1})^{2}}{2t_{j}} - \sum_{j=1}^{J+1} \omega_{j}(x_{j},x_{j-1})\,.$$

と書ける。 $t_j \to 0$ なので $(1/t_j)$ を避けるため、

$$\left(rac{1}{2\pi i\hbar t_{j+1}}
ight)^{d/2}e^{rac{i}{\hbar}rac{(x_{j+1}-x_{j})^{2}}{2t_{j+1}}}\left(rac{1}{2\pi i\hbar T_{j}}
ight)^{d/2}e^{rac{i}{\hbar}rac{(x_{j}-x_{0})^{2}}{2T_{j}}}$$

$$=\left(rac{1}{2\pi i\hbar T_{i+1}}
ight)^{d/2}e^{rac{i}{\hbar}rac{(x_{j+1}-x_0)^2}{2T_{j+1}}} imes \left(rac{1}{2\pi\hbar}
ight)^{d}\int_{\mathbb{R}^d}e^{rac{i}{\hbar}(-rac{t_{j+1}T_{j}}{2T_{j+1}}\xi_{j}^2+(x_{j}-rac{T_{j}}{T_{j+1}}x_{j+1}-rac{t_{j+1}}{T_{j+1}}x_0)\xi_{j})}d\xi_{j}$$

を帰納的に用いて、

$$e^{rac{i}{\hbar}S^{\dagger}_{\Delta_{T,0}}(x,x_0)-rac{i}{\hbar}rac{(x-x_0)^2}{2T}}q_{\Delta_{T,0}}(\hbar,x,x_0) = \left(rac{1}{2\pi\hbar}
ight)^{dJ}\int_{\mathrm{R}^{2dJ}}e^{rac{i}{\hbar}\Phi}F_{\Delta_{T,0}}\prod_{i=1}^{J}dx_id\xi_j\,,$$

と書き換える。ここで

$$\Phi = \sum_{j=1}^J (x_j - rac{T_j}{T_{j+1}} x_{j+1} - rac{t_{j+1}}{T_{j+1}} x_0) \xi_j - \sum_{j=1}^J rac{t_{j+1} T_j}{2 T_{j+1}} \xi_j^2 - \sum_{j=1}^{J+1} \omega_j(x_j, x_{j-1}) \,.$$

部分積分を何度も何度も繰り返して

一階微分作用素

$$M_j = rac{1-i(\partial_{oldsymbol{\xi}_j}\Phi)\partial_{oldsymbol{\xi}_j}}{1+\hbar^{-1}|\partial_{oldsymbol{\xi}_j}\Phi|^2}, ~~ N_j = rac{1-i(\partial_{x_j}\Phi)\partial_{x_j}}{1+\hbar^{-1}|\partial_{x_j}\Phi|^2}, ~~ j=1,2,\ldots,J$$

を用いる。

$$M_j e^{rac{i}{\hbar}\Phi} = e^{rac{i}{\hbar}\Phi}, \;\; N_j e^{rac{i}{\hbar}\Phi} = e^{rac{i}{\hbar}\Phi}\,.$$

に注意して、部分積分を何度も何度も繰り返して

$$\left(rac{1}{2\pi\hbar}
ight)^{dJ}\int_{\mathrm{R}^{2dJ}}e^{rac{i}{\hbar}\Phi}F_{\Delta_{T,0}}\prod_{j=1}^{J}dx_{j}d\xi_{j}=\left(rac{1}{2\pi\hbar}
ight)^{dJ}\int_{\mathrm{R}^{2dJ}}e^{rac{i}{\hbar}\Phi}F_{\Delta_{T,0}}^{lacktriangle}\prod_{j=1}^{J}dx_{j}d\xi_{j}\,,$$

と、微分作用素の多重積

$$F_{\Delta_{T,0}}^{lack} = (N_J^*)^{d+1} \cdots (N_2^*)^{d+1} (N_1^*)^{d+1} (M_J^*)^{d+1} \cdots (M_2^*)^{d+1} (M_1^*)^{d+1} F_{\Delta_{T,0}}$$

を用いて書き換える。ここで、 $M_j^st,\,N_j^st$ は $M_j,\,N_j$ の共役作用素である。

違う結果を期待する

一般には微分作用素の J 個の多重積は $J o \infty$ のとき C^J でコントロールできない。 しかし、

$$egin{aligned} \partial_{\xi_j} \Phi &= x_j - rac{T_j}{T_{j+1}} x_{j+1} - rac{t_{j+1}}{T_{j+1}} x_0 - rac{t_{j+1} T_j}{T_{j+1}} \xi_j \,, \ M_j^* &= a_j^1(x_{j+1}, \xi_j, x_j, x_0) \partial_{\xi_j} + a_j^0(x_{j+1}, \xi_j, x_j, x_0) \,, \end{aligned}$$

は J によらず高々 4d 個の変数の関数である。

ゆえに、 $\partial_{x_{j+1}},\,\partial_{\xi_j},\,\partial_{x_j}$ だけが M_j^* を微分する。

つまり、 $N_{j+1}^*,\, M_j^*,\, N_j^*$ だけが M_j^* を微分する。

よって、 $F^igapha_{\Delta_{T,0}}$ は $J o\infty$ のとき C^J でコントロールできる。荒く言えば

$$egin{align} M_j^* \circ & \Longrightarrow & rac{C}{(1+\hbar^{-1}|\partial_{\xi_j}\Phi|^2)^{1/2}} imes, \ N_j^* \circ & \Longrightarrow & rac{C}{(1+\hbar^{-1}|\partial_{x_j}\Phi|^2)^{1/2}} imes. \end{aligned}$$

すべての変数を一度に変える

$$z_j = \partial_{\xi_j}\Phi,\, \zeta_j = \partial_{x_j}\Phi,\, j=1,2,\ldots,J$$
 とおくと、

$$|F^{igoth}_{\Delta_{T,0}}| \leq (C')^J \prod_{j=1}^J rac{1}{(1+\hbar^{-1}|z_j|^2)^{(d+1)/2}} rac{1}{(1+\hbar^{-1}|\zeta_j|^2)^{(d+1)/2}}, \ \left|\detrac{\partial (x_J,\ldots,x_1,\xi_J,\ldots,\xi_1)}{\partial (z_J,\ldots,z_1,\zeta_J,\ldots,\zeta_1)}
ight| \leq (C'')^J.$$

すべての変数 $(x_J,\ldots,x_1,\xi_J,\ldots,\xi_1)$ を $(z_J,\ldots,z_1,\zeta_J,\ldots,\zeta_1)$ に一度に変えると

$$\left(rac{1}{2\pi\hbar}
ight)^{dJ}\int_{\mathrm{R}^{2dJ}}e^{rac{i}{\hbar}\Phi}F_{\Delta_{T,0}}^{lacktriangle}\prod_{j=1}^{J}dx_{j}d\xi_{j}$$

$$=\left(rac{1}{2\pi\hbar}
ight)^{dJ}\int_{\mathrm{R}^{2dJ}}e^{rac{i}{\hbar}\Phi}F_{\Delta_{T,0}}^{lacktriangle}\left|\detrac{\partial(x_J,\ldots,x_1,\xi_J,\ldots,\xi_1)}{\partial(z_J,\ldots,z_1,\zeta_J,\ldots,\zeta_1)}
ight|\prod_{j=1}^{J}dz_jd\zeta_j\,.$$

 $(z_J,\dots,z_1,\zeta_J,\dots,\zeta_1)$ に関して積分すると、多重振動積分が $J o\infty$ のとき C^J でコントロールできることがわかる。 \square

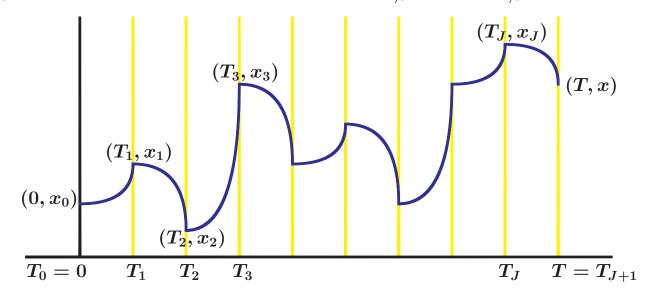
12. Fujiwara の停留位相法

D. Fujiwara, Nagoya Math. J. 124 (1991).

以後、簡単のため、区分的古典経路の場合を説明する:

 $\gamma_{\Delta_{T,0}}$ を (T_j,x_j) と (T_{j-1},x_{j-1}) を古典経路で結ぶ区分的古典経路とする。

$$S[\gamma_{\Delta_{T,0}}] = S_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0) \,, \,\, F[\gamma_{\Delta_{T,0}}] = F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0) \,.$$



 $egin{array}{c|c} \mathbf{Remark} & \gamma_{T,0} & \mathsf{lt} & (T,x) & \mathsf{lt} & (0,x_0) & \mathsf{e} & \mathsf{lt} & \mathsf$

$$S[\gamma_{T,0}] = S_{T,0}(x,x_0)\,, \ \ F[\gamma_{T,0}] = F_{T,0}(x,x_0)\,.$$

 $(\partial_{(x_J,...,x_1)}S_{\Delta_{T,0}})(x_{J+1},x_J^\dagger,\ldots,x_1^\dagger,x_0)=0$ となる危点 $(x_J^\dagger,\ldots,x_1^\dagger)$ を用いて

$$D_{\Delta_{T,0}}(x_{J+1},x_0) = \left(rac{\prod_{j=1}^{J+1}t_j}{T_{J+1}}
ight)^d \det(\partial^2_{(x_J,...,x_1)}S_{\Delta_{T,0}})(x_{J+1},x_J^\dagger,\ldots,x_1^\dagger,x_0)$$

を定義し、多重振動積分の余りの項を考える。

$$egin{aligned} &\prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S_{\Delta_{T,0}}(x_{J+1},x_J,...,x_1,x_0)} F_{\Delta_{T,0}}(x_{J+1},x_J,...,x_1,x_0) \prod_{j=1}^{J} dx_j \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{T,0}(x,x_0)} \left(D_{\Delta_{T,0}}(x,x_0)^{-1/2} F_{T,0}(x,x_0) + \hbar \Upsilon_{\Delta_{T,0}}(\hbar,x,x_0)
ight) \,. \end{aligned}$$

 $oxed{ Lemma F } m \geq 0$ とする。任意の非負整数 M に対し、正の定数 A_M, X_M が存在

し、任意の分割 $\Delta_{T,0}$ と任意の多重指数 $|lpha_j| \leq M, j=0,1,\ldots,J,J+1$ に対し、

$$|(\prod_{j=0}^{J+1}\partial_{x_j}^{lpha_j})F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)| \leq A_M(X_M)^{J+1}(1+\sum_{j=0}^{J+1}|x_j|)^m.$$

を仮定する。このとき、多重振動積分は $J o \infty$ によらず C でコントロールできる。

$$|\Upsilon_{\Delta_{T,0}}(\hbar,x,x_0)| \leq CT(1+|x_{J+1}|+|x_0|)^m$$
.

 $| \mathbf{Remark} | J = 0, 1, 2$ のとき、 $| \mathbf{Lemma} | \mathbf{F} |$ の条件は以下のようになる。

最も単純な分割 $T=T_1>T_0=0$ ($oldsymbol{J}=oldsymbol{0}$) のとき

$$|\partial_{x_1}^{lpha_1}\partial_{x_0}^{lpha_0}F_{T,0}(x_1,x_0)| \leq A_M(X_M)^{f 1}(1+|x_1|+|x_0|)^m$$
 .

分割 $T=T_2>T_1>T_0=0$ ($oldsymbol{J}=1$) のとき

$$|\partial_{x_2}^{lpha_2}\partial_{x_1}^{lpha_1}\partial_{x_0}^{lpha_0}F_{T,T_1,0}(x_2,x_1,x_0)| \leq A_M(X_M)^2(1+|x_2|+|x_1|+|x_0|)^m$$
 .

分割 $T=T_3>T_2>T_1>T_0=0$ ($oldsymbol{J}=2$) のとき

$$egin{aligned} &|\partial_{x_3}^{lpha_3}\partial_{x_2}^{lpha_2}\partial_{x_1}^{lpha_1}\partial_{x_0}^{lpha_0}F_{T,T_2,T_1,0}(x_3,x_2,x_1,x_0)| \ &\leq A_M(X_M)^3(1+|x_3|+|x_2|+|x_1|+|x_0|)^m\,. \end{aligned}$$

Remark $|\partial_x^lpha B(t,x)| \leq C_lpha$ のとき、 $F[\gamma] = e^{\int_0^T B(t,\gamma(t))dt}$ は仮定を満たす。 $F_{\Delta_{T,0}} = F[\gamma_{\Delta_{T,0}}] = \prod_{j=1}^{J+1} e^{\int_{T_{j-1}}^{T_j} B(t,\gamma_{T_j,T_{j-1}}(t,x_j,x_{j-1}))dt}$.

主部と余りを区別する

 $\mathbf{Proof} \text{ of Lemma F}$ 簡単のため m=0 とおく。

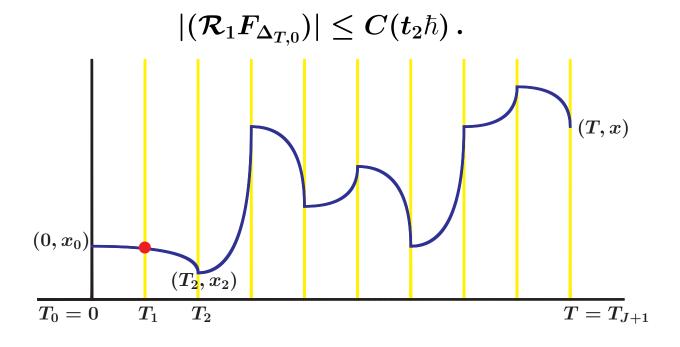
 x_1,x_2,\dots,x_J に関して積分しないといけない。まず x_1 に関して積分する。停留位相法により、主部 $(\mathcal{M}_1F_{\Delta_{T,0}})$ と余り $(\mathcal{R}_1F_{\Delta_{T,0}})$ を区別する。

$$egin{aligned} \left(rac{1}{2\pi i\hbar t_2}
ight)^{d/2} \left(rac{1}{2\pi i\hbar t_1}
ight)^{d/2} \int_{\mathrm{R}^d} e^{rac{i}{\hbar}S_{\Delta_{T,0}}} F_{\Delta_{T,0}}(\dots,x_2,x_1,x_0) dx_1 \ &= \left(rac{1}{2\pi i\hbar T_2}
ight)^{d/2} e^{rac{i}{\hbar}S_{(\Delta_{T,T_2},0)}} (\mathcal{M}_1 F_{\Delta_{T,0}})(\dots,x_2,x_0) \ &+ \left(rac{1}{2\pi i\hbar T_2}
ight)^{d/2} e^{rac{i}{\hbar}S_{(\Delta_{T,T_2},0)}} (\mathcal{R}_1 F_{\Delta_{T,0}})(\dots,x_2,x_0) \,. \end{aligned}$$

主部 $(\mathcal{M}_1F_{\Delta_{T,0}})$ は x_2 に関して「単純」で

$$egin{align} (\mathcal{M}_1 F_{\Delta_{T,0}})(\dots,x_2,x_0) &= D_{T_2,T_1,0}(x_2,x_0)^{-1/2} F_{\Delta_{T,0}}(\dots,x_2,oldsymbol{x}_1^\dagger,x_0) \ &= D_{\Delta_{T_2,0}}(x_2,x_0)^{-1/2} F_{(\Delta_{T,T_2},0)}(\dots,x_2,x_0) \,, \end{split}$$

となる。ここで、分割 $(\Delta_{T,T_2},0):T=T_{J+1}>T_J>\cdots>T_2>T_0=0$ である。 余り $(\mathcal{R}_1F_{\Delta_{T,0}})$ は x_2 に関して「複雑」であるが、小さい項 $(t_2\hbar)$ で評価できる。



単純な積分だけをする

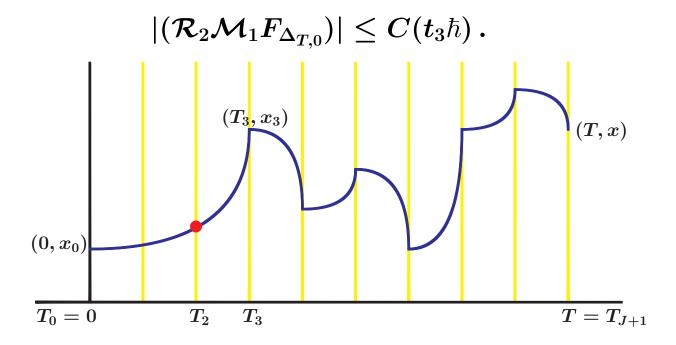
主部 $(\mathcal{M}_1F_{\Delta_{T,0}})$ は x_2 に関して「単純」なので、さらに x_2 に関して積分する。停留位相法により、主部と余りを区別する。

$$egin{aligned} &\left(rac{1}{2\pi i\hbar t_3}
ight)^{d/2} \left(rac{1}{2\pi i\hbar T_2}
ight)^{d/2} \int_{\mathrm{R}^d} e^{rac{i}{\hbar}S_{(\Delta_{T,T_2},0)}} (\mathcal{M}_1 F_{\Delta_{T,0}}) (\dots,x_3,x_2,x_0) dx_2 \ &= \left(rac{1}{2\pi i\hbar T_3}
ight)^{d/2} e^{rac{i}{\hbar}S_{(\Delta_{T,T_3},0)}} (\mathcal{M}_2 \mathcal{M}_1 F_{\Delta_{T,0}}) (\dots,x_3,x_0) \ &+ \left(rac{1}{2\pi i\hbar T_3}
ight)^{d/2} e^{rac{i}{\hbar}S_{(\Delta_{T,T_3},0)}} (\mathcal{R}_2 \mathcal{M}_1 F_{\Delta_{T,0}}) (\dots,x_3,x_0) \,. \end{aligned}$$

主部 $(\mathcal{M}_2\mathcal{M}_1F_{\Delta_{T,0}})$ は x_3 に関して「単純」で

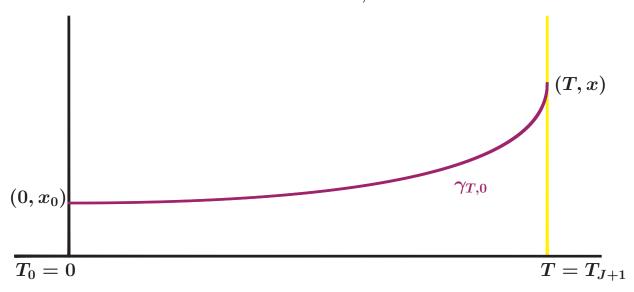
$$egin{aligned} &(\mathcal{M}_2\mathcal{M}_1F_{\Delta_{T,0}})(\dots,x_3,x_0) \ &= D_{T_3,T_2,0}(x_3,x_0)^{-1/2}D_{\Delta_{T_2,0}}(oldsymbol{x_2^\dagger},x_0)^{-1/2}F_{(\Delta_{T,T_2},0)}(\dots,x_3,oldsymbol{x_2^\dagger},x_0) \ &= D_{\Delta_{T_3,0}}(x_3,x_0)^{-1/2}F_{(\Delta_{T,T_3},0)}(\dots,x_3,x_0) \ , \end{aligned}$$

となる。ここで、分割 $(\Delta_{T,T_3},0):T=T_{J+1}>T_J>\dots>T_3>T_0=0$ である。 余り $(\mathcal{R}_2\mathcal{M}_1F_{\Delta_{T,0}})$ は x_3 に関して「複雑」であるが、小さな項 $(t_3\hbar)$ で評価できる。



主部 $(\mathcal{M}_2\mathcal{M}_1F_{\Delta_{T,0}})$ は x_3 に関して「単純」なので、さらに x_3 で積分する。この単純な積分を繰り返して、Theorem 7 の主部を得る。

$$egin{align} (\mathcal{M}_J\mathcal{M}_{J-1}\dots\mathcal{M}_1F_{\Delta_{T,0}}) &= D_{\Delta_{T,0}}(x,x_0)^{-1/2}F_{T,0}(x,x_0) \ &= D_{\Delta_{T,0}}(x,x_0)^{-1/2}F[\gamma_{T,0}] \ . \end{split}$$



さて、余り($\mathcal{R}_1F_{\Delta_{T,0}}$)は x_2 に関して「複雑」であるので、 x_2 に関する積分は後回しにして、先に x_3 に関して積分する。停留位相法により、主部と余りを区別する。

$$egin{split} \left(rac{1}{2\pi i\hbar t_4}
ight)^{d/2} & \left(rac{1}{2\pi i\hbar t_3}
ight)^{d/2} \left(rac{1}{2\pi i\hbar T_2}
ight)^{d/2} \int_{\mathbb{R}^d} e^{rac{i}{\hbar}S_{(\Delta_{T,T_2},0)}} (\mathcal{R}_1 F_{\Delta_{T,0}}) (\dots,x_4,x_3,x_2,x_0) dx_3 \ & = \left(rac{1}{2\pi i\hbar (t_4+t_3)}
ight)^{d/2} \left(rac{1}{2\pi i\hbar T_2}
ight)^{d/2} e^{rac{i}{\hbar}S_{(\Delta_{T,T_4},T_2,0)}} (\mathcal{M}_3 \mathcal{R}_1 F_{\Delta_{T,0}}) (\dots,x_4,x_2,x_0) \ & + \left(rac{1}{2\pi i\hbar (t_4+t_3)}
ight)^{d/2} \left(rac{1}{2\pi i\hbar T_2}
ight)^{d/2} e^{rac{i}{\hbar}S_{(\Delta_{T,T_4},T_2,0)}} (\mathcal{R}_3 \mathcal{R}_1 F_{\Delta_{T,0}}) (\dots,x_4,x_2,x_0) \ & + \left(\mathcal{R}_3 \mathcal{R}_1 F_{\Delta_{T,0}}
ight) | \leq C(t_4 \hbar) C(t_2 \hbar) \ . \end{split}$$

主部($\mathcal{M}_3\mathcal{R}_1F_{\Delta_{T,0}}$)は x_4 に関して「単純」なので、さらに x_4 に関して積分する。しかし、余り $(\mathcal{R}_3\mathcal{R}_1F_{\Delta_{T,0}})$ は x_4 に関して「複雑」なので、 x_4 に関する積分を後回しにして、先に x_5 で積分する。

Fujiwara のルールは以下の通り

 x_j で積分する。停留位相法により、主部と余りを区別する。

主部は x_{j+1} に関して「単純」である。

ゆえに、さらに x_{j+1} に関して積分する。

しかしながら、余りは x_{j+1} に関して「複雑」である。

ゆえに、 x_{j+1} に関する積分を後回しにして、先に x_{j+2} で積分する。

ルールは最後まで貫く

ルールを最後まで貫くと、

$$q_{\Delta_{T,0}}(\hbar,x_{J+1},x_0)=q_0(x_{J+1},x_0)+\sum'q_{j_K,j_{K-1},...,j_1}(x_{J+1},x_0)\,.$$

と書ける。ここで $q_0(x_{J+1},x_0)=D_{\Delta_{T,0}}(x,x_0)^{-1/2}F_{T,0}(x,x_0)$ は Theorem 7 の主部であり、和 \sum' は

$$0 = j_0 < j_1 - 1 < j_1 < j_2 - 1 < j_2 < \dots < j_K - 1 < j_K \le J + 1$$

となるすべての整数 (j_K,j_{K-1},\ldots,j_1) に関する和を意味し、 $q_{j_K,j_{K-1},\ldots,j_1}(x_{J+1},x_0)$ は後回しにした複雑な積分

$$egin{split} \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{T,0}(x_{J+1},x_0)} q_{j_K,j_{K-1},...,j_1}(x_{J+1},x_0) &= \prod_{k=1}^{K+1} \left(rac{1}{2\pi i\hbar (T_{j_k}-T_{j_{k-1}})}
ight)^{d/2} \ imes \int_{\mathrm{R}^{dK}} e^{rac{i}{\hbar}S_{(T,T_{j_K},...,T_{j_1},0)}} b_{j_K,j_{K-1},...,j_1}(x_{J+1},x_{j_K},\ldots,x_{j_1},x_0) \prod_{k=1}^{K} dx_{j_k}, \end{split}$$

である。ここで、被積分関数

$$egin{aligned} b_{j_K,j_{K-1},...,j_1}(x_{J+1},x_{j_K},\ldots,x_{j_1},x_0) \ &= (\mathcal{Q}_J\cdots\mathcal{Q}_3\mathcal{Q}_2\mathcal{Q}_1F_{\Delta_{T,0}})(x_{J+1},x_{j_K},\ldots,x_{j_1},x_0) \,. \end{aligned}$$

であり

$$\mathcal{Q}_j = egin{cases} ext{Identity if } j = j_K, j_{K-1}, \ldots, j_1 \ & \mathcal{R}_j & ext{if } j = j_K - 1, j_{K-1} - 1, \ldots, j_1 - 1 \ & \mathcal{M}_j & ext{otherwise} \end{cases}$$

である。ゆえに、被積分関数は多くの小さな項 $(t_{j_k}\hbar)$ で評価できる。

$$|b_{j_K,j_{K-1},...,j_1}(x_{J+1},x_{j_K},\ldots,x_{j_1},x_0)| \leq C^K \Big(\prod_{k=1}^K (\hbar t_{j_k})\Big)\,.$$

複雑な積分をすべて他人に押し付ける

後回しにした複雑な積分すべてを H. Kumano-go-Taniguchi の定理に押し付けると、

$$|q_{j_K,j_{K-1},...,j_1}(x_{J+1},x_0)| \leq (C')^K \Big(\prod_{k=1}^K (\hbar t_{j_k})\Big)$$
 .

を得る。余りの項は $q_{j_K,j_{K-1},...,j_1}(x_{J+1},x_0)$ の和

$$\Upsilon_{\Delta_{T,0}}(\hbar,x_{J+1},x_0) = rac{1}{\hbar} \sum^{\prime} q_{j_K,j_{K-1},...,j_1}(x_{J+1},x_0).$$

である。 $\sum\limits_{j=1}^{J+1}t_j=T,\,0<\hbar<1$ を用いて和を評価すると、余りの項は

$$egin{align} |\Upsilon_{\Delta_{T,0}}(\hbar,x_{J+1},x_0)| & \leq rac{1}{\hbar} \sum_{k=1}^{\prime} \left((C')^K \prod_{k=1}^K (\hbar t_{j_k})
ight) \ & \leq rac{1}{\hbar} \Big(\prod_{j=1}^{J+1} (1+C'\hbar t_j) - 1 \Big) \ & \leq (C'') T \end{aligned}$$

で評価できる。□

13. 私の方法

区分的古典経路の場合の仮定 $m\geq 0,\, u_j\geq 0,\, \sum_{j=1}^{J+1}u_j\leq U<\infty$ とする。任意の

非負整数 M に対し、正の定数 A_M, X_M が存在し、任意の分割 $\Delta_{T,0},$ 任意の多重指数

 $|lpha_j| \leq M, \, j = 0, 1, \ldots, J+1$ と任意の $1 \leq k \leq J$ に対し

$$|(\prod_{j=0}^{J+1}\partial_{x_j}^{lpha_j})F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)| \leq A_M(X_M)^{J+1}(1+\sum_{j=0}^{J+1}|x_j|)^m\,,$$

$$(2) \quad |(\prod_{j=0}^{n} \partial_{x_j}^{lpha_j}) rac{\partial_{oldsymbol{x_k}}}{\partial_{oldsymbol{x_k}}} F_{\Delta_{T,0}}(x_{J+1},x_J,\ldots,x_1,x_0)|$$

$$\leq A_M(X_M)^{J+1}(u_{k+1}+u_k)(1+\sum_{j=0}^{J+1}|x_j|)^m$$
 .

$$\partial_{x_k} F_{\Delta_{T,0}} = \prod_{j=1}^{J+1} e^{\int_{T_{j-1}}^{T_j} B(t,\gamma_{T_j,T_{j-1}}(t,x_j,x_{j-1}))dt}$$

$$imes (\int_{T_k}^{T_{k+1}} \partial_{x_k} B(t,\gamma_{T_{k+1},T_k}(x_{k+1},x_k)) dt + \int_{T_{k-1}}^{T_k} \partial_{x_k} B(t,\gamma_{T_k,T_{k-1}}(x_k,x_{k-1})) dt)$$
 .

多重積分を経路で考える

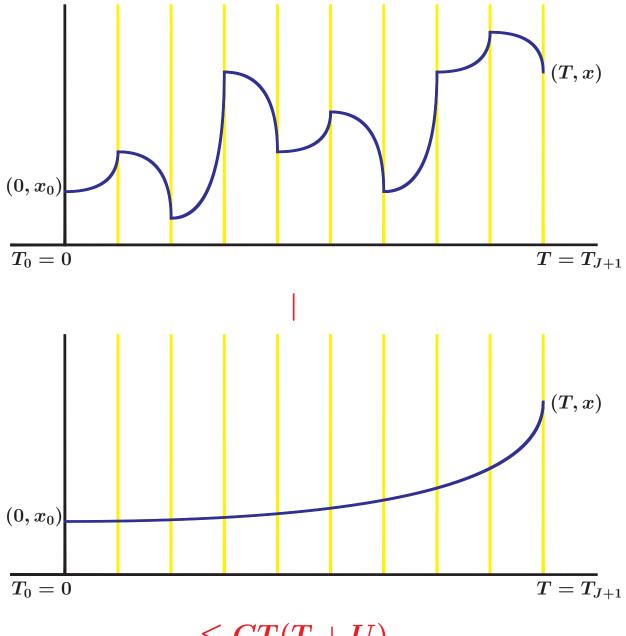
この仮定のもとで、多重積分の評価は以下のようになる。

$$egin{aligned} (\star) \prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_{j}}
ight)^{d/2} \int_{\mathrm{R}^{dJ}} e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]} F[\gamma_{\Delta_{T,0}}] \prod_{j=1}^{J} dx_{j} \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{T,0}(x,x_{0})} q_{\Delta_{T,0}}(\hbar,x,x_{0}) \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{T,0}(x,x_{0})} \left(D_{\Delta_{T,0}}(x,x_{0})^{-1/2} F_{T,0}(x,x_{0}) + \hbar \Upsilon_{\Delta_{T,0}}(\hbar,x,x_{0})
ight) \,. \end{aligned}$$

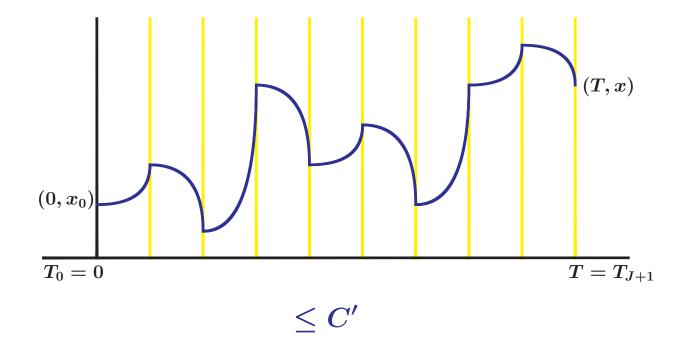
Lemma F'

$$|\Upsilon_{\Delta_{T,0}}(\hbar,x,x_0)| \leq CT(T+U)(1+|x|+|x_0|)^m\,, \ |q_{\Delta_{T,0}}(\hbar,x,x_0)| \leq C'(1+|x|+|x_0|)^m\,.$$

経路を用いて、Lemma F'を解釈する。簡単のため m=0 とする。



$$\leq CT(T+U)$$



極限の存在を示すには、 分割 $\Delta_{T,0}$ に関する多重積分 (\star) の Cauchy 列を作れば良い。 2 つの分割

$$\Delta_{T,0} \hspace{1cm} : T = T_{J+1} > T_J > \cdots \hspace{1cm} \cdots > T_1 > T_0 = 0 \,,$$

$$(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})\,:T=T_{J+1}>\cdots>T_{N+1}$$
 > $T_{n-1}>\cdots>T_0=0\,,$

に対する2つの多重積分を考える。

2つの多重積分を2つの経路で比較する

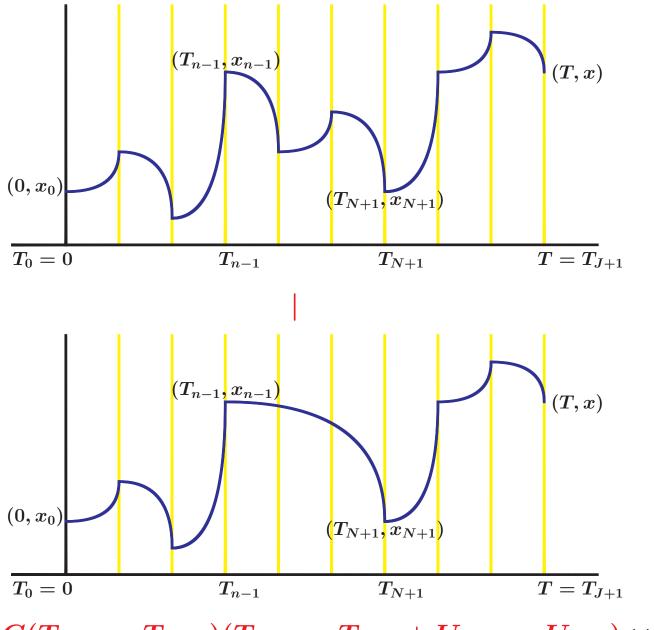
多重積分

$$egin{aligned} &\prod_{j=1}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \int \cdots \int \cdots \int \cdots \int e^{rac{i}{\hbar}S[\gamma_{\Delta_{T,0}}]} F[\gamma_{\Delta_{T,0}}] \prod_{j=1}^{J} dx_j \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{T,0}(x,x_0)} q_{\Delta_{T,0}}(\hbar,x,x_0)\,, \end{aligned}$$

と多重積分

$$egin{aligned} &\prod_{j=N+2}^{J+1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \left(rac{1}{2\pi i\hbar (T_{N+1}-T_{n-1})}
ight) \prod_{j=1}^{n-1} \left(rac{1}{2\pi i\hbar t_j}
ight)^{d/2} \ &\int \cdots \int \int \int e^{rac{i}{\hbar}S[\gamma_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}]} F[\gamma_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}] \prod_{j=N+1}^{J} dx_j \prod_{j=1}^{n-1} dx_j \ &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S_{T,0}(x,x_0)} q_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}(\hbar,x,x_0) \,. \end{aligned}$$

を2つの経路で比較する。



$$\leq C' \times C(T_{N+1} - T_{N-1})(T_{N+1} - T_{n-1} + U_{N+1} - U_{n-1}) \times C'$$

これは2つの多重積分の差を意味する。

$$egin{aligned} |q_{\Delta_{T,0}}(\hbar,x,x_0) - q_{(\Delta_{T,T_{N+1}},\Delta_{T_{n-1},0})}(\hbar,x,x_0)| \ & \leq C(T_{N+1} - T_{n-1})(T_{N+1} - T_{n-1} + U_{N+1} - U_{n-1})(1 + |x| + |x_0|)^m \,. \end{aligned}$$

 ${f Theorem~2'}$ (${f Feynman~}$ 経路積分は存在する)ある関数 $q(T,\hbar,x,x_0)$ が存在し、

$$egin{aligned} |q_{\Delta_{T,0}}(\hbar,x,x_0) - q(T,\hbar,x,x_0)| \ & \leq C|\Delta_{T,0}|(U+T)(1+|x|+|x_0|)^m\,, \end{aligned}$$

となる。つまり、多重積分 (\star) は $|\Delta_{T,0}| o 0$ のとき、 R^{2d} 上の任意のコンパクト集合上で収束する。

準古典近似の第2項は何か?(Fujiwara)

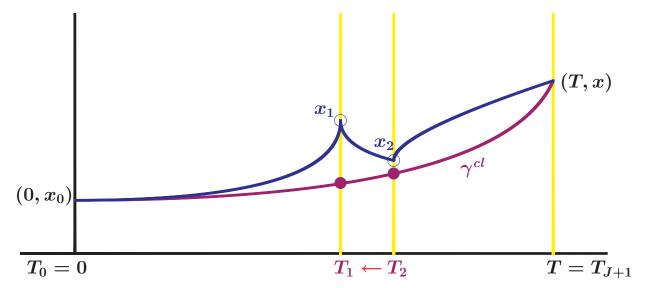
最近、Fujiwara は 区分的古典経路 を用いて、準古典近似の第2項を与えた。

D. Fujiwara and N. Kumano-go, J. Math. Soc. Japan Vol 58, No. 3 (2006).

 $\Gamma_{T,T_2,T_1,0}$ を $(0,x_0)$, (T_1,x_1) , (T_2,x_2) , (T,x) を古典経路で結ぶ区分的古典経路とする。

$$q(T_1) \equiv q(T_1,x,x_0) \equiv \lim_{T_2 \downarrow T_1} riangle_{x_1} \Big(D(T_1,x_1,x_0)^{-1/2} F[\gamma_{T,T_2,T_1,0}] \Big) \Big|_{x_1 = \gamma^{cl}(T_1)}^{x_2 = \gamma^{cl}(T_2)}.$$

が (x,x_0) に関して \mathbf{R}^{2d} 上広義一様収束する。



 ${f Theorem~8}$ (準古典近似の第2項) ${f Lemma~o~}q(t)$ が連続と仮定する。このとき、

$$egin{aligned} \int e^{rac{i}{\hbar}S[\gamma]}F[\gamma]\mathcal{D}[\gamma] &= \left(rac{1}{2\pi i\hbar T}
ight)^{d/2} e^{rac{i}{\hbar}S[\gamma^{cl}]}D(T,x,x_0)^{-1/2} \ & imes \left(F[\gamma^{cl}] + \hbarrac{i}{2}\int_0^T D(t,\gamma^{cl}(t),x_0)^{1/2}q(t)dt + \hbar^2 \Upsilon'(\hbar,x,x_0)
ight) \end{aligned}$$

と書け、

$$|\Upsilon'(\hbar, x, x_0)| \leq C(1 + |x| + |x_0|)^m$$
.

 $m Remark \mid F[\gamma] \equiv 1$ のとき、この第2項は

$$\left\|\hbarrac{i}{2}\int_0^T D(t,oldsymbol{\gamma^{cl}}(t),x_0)^{1/2} \Big(riangle_y D(t,y,x_0)^{-1/2}\Big)
ight|_{y=oldsymbol{\gamma^{cl}}(t)} dt$$

となり、Schrödinger 方程式の基本解に対する Birkhoff の第2項の微分方程式を満たす。